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ABSTRACT 
This paper is a study of techniques for measuring and predicting 
visual fidelity.  As visual stimuli we use polygonal models, and 
vary their fidelity with two different model simplification 
algorithms.  We also group the stimuli into two object types: 
animals and man made artifacts.  We examine three different 
experimental techniques for measuring these fidelity changes: 
naming times, ratings, and preferences.  All the measures were 
sensitive to the type of simplification and level of simplification.  
However, the measures differed from one another in their 
response to object type.  We also examine several automatic 
techniques for predicting these experimental measures, including 
techniques based on images and on the models themselves.  
Automatic measures of fidelity were successful at predicting 
experimental ratings, less successful at predicting preferences, and 
largely failures at predicting naming times.  We conclude with 
suggestions for use and improvement of the experimental and 
automatic measures of visual fidelity. 

CR Categor ies: I.3.7 Three-Dimensional Graphics and Realism, 
I.3.5 Computational Geometry and Object Modeling 

Keywords: visual fidelity, model simplification, image quality, 
naming time, human vision, perception 

1 INTRODUCTION 
Polygonal models, images and the techniques for rendering 

them are growing steadily in complexity, and with this growth 
comes a need for visual quality control.  For interactive computer 
graphics applications, fidelity of displayed scenes must be 
adjusted in real time [Lueb97, Lind96, Redd98].  In many other 
less interactive applications, models must be simplified to contain 
fewer polygons, while preserving visual appearance [Garl97, 
Garl99, Hink93, Ross93, Turk92].  Image generators must 
determine where and if to add additional image detail [Boli98, 
Rama99].  Finally, image compression algorithms must preserve 
appearance while reducing image size [Cosm93, Gers92]. 

How can visual quality and fidelity be measured?  This paper 
focuses on this question.  Ultimately, visual quality can only be 
assessed by human observers.  We compare and contrast three 
different experimental measures of visual quality: naming times 
[Wats00], ratings [Cosm93, Mart93] and forced choice 
preferences.  However, the interactive demands of many 

applications requiring control of visual fidelity do not allow 
experimentation, which has led many researchers to develop 
automatic measures of visual fidelity [Boli98, Cign98, Daly93, 
Lubi93, Rama99].  These measures have then been incorporated 
into image generation and simplification algorithms [Lind00, 
Vole00].  We evaluate some of these automatic measures by 
comparing their results to those of the experimental measures 
studied herein. 

In the following sections, we review the rating, preference, and 
naming time experimental fidelity measures; present a brief 
survey of existing automatic fidelity measures; and discuss the 
small body of computer graphics literature that uses experimental 
fidelity measures or evaluates automatic fidelity measures.  We 
then present our comparisons and evaluations of several 
experimental and automatic fidelity measures in the context of 
model simplification. 

2 EXPERIM ENTAL FIDELITY M EASURES 
Ratings and preferences have been widely used in the 

experimental sciences to obtain relative judgments from human 
participants.  With ratings, observers assign to a stimulus a 
number with a range and meaning determined by the 
experimenter.  With preferences, observers simply choose the 
stimulus with more of the experimenter identified quality.  Both 
represent conscious decisions, and so both have proven useful in a 
wide array of settings, including discomfort ratings in psychiatry, 
political and popular polling, and the social sciences.  With regard 
to visual fidelity, the experimentally defined meaning or quality 
of the underlying scales used usually references “quality”  or 
“similarity” . 

Naming time, the time from the appearance of an object until an 
observer names it, has a long history of use in cognitive 
psychology.  Existing research has already shown that naming 
time indexes a number of factors that affect object identification, 
including the frequency of an object’s name in print, the 
proportion of people who call the object by a particular name and 
the number of different names in use for it [Vitk95].  Factors of 
interest to computer graphics researchers include viewpoint 
[Joli85, Palm81], familiarity [Joli89] and structural similarity 
[Bart76, Hump95].  In work of particular interest for this study, 
researchers have shown repeatedly that natural objects take longer 
to name than manmade artifacts [Hump88].  They hypothesize 
that natural objects are structurally more similar to one another, 
requiring more disambiguation than artifacts. 

3 AUTOM ATIC FIDELITY M EASURES 
Although these experimental measures of visual fidelity can be 

quite effective, time or resources often do not allow their use.  In 
such cases researchers and application builders often turn to 
automatic measures of visual fidelity. 

For level of detail control, researchers estimate error by tracking 
the deviation of geometry in the image plane [Lueb97, Lind96], 
and possibly modulating the importance of this error with 
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knowledge of human perception [Redd98].  On the other hand, 
model simplification researchers have long used three 
dimensional (3D) measures of distance [Ross93], curvature 
[Hink93, Turk92], or volume [Lind99] since one typically does 
not know what part of the model an user may be observing, and 
these measures are view independent.  Lindstrom [Lind00] has 
measured fidelity for simplification by taking virtual snapshots of 
the model being simplified from several view points, and then 
measuring the difference between the snapshots taken before and 
after the simplification with mean squared error (MSE) (see 
below).  Although it was not used in actual simplification, 
Cignoni, Rocchini, and Scopigno [Cign98] have offered the Metro 
tool, which allows users to evaluate the quality of already 
simplified models with 3D measures of distance and volume. 

In the fields of image generation and compression, researchers 
have focused on view dependent automatic fidelity measures that 
compare the quality of images.  The MSE measure simply finds 
the mean of the squared pixel by pixel differences between the 
original and approximate images (often the differences are 
normalized by the squared value of the pixel in the original 
image).  However, recently several shortcomings of MSE were 
noted [Giro93] and more complex measures were built based on 
numerical models of the early stages of the human visual system 
[Boli98, Daly93, Lubi93].  These were then used to evaluate 
image compression algorithms and incorporated into image 
generation algorithms [Boli98, Rama99, Vole00]. 

4 PREVIOUS FIDELITY EXPERIM ENTS 
The study of visual fidelity measures and their is are just 

beginning to make their way into computer graphics research.  
Rushmeier, Rogowitz and Piatko [Rush00] used a fine grained, 
one dimensional experimental rating (or scaling) system to 
evaluate the effects on fidelity of approximations in geometry and 
texture.  They found indications that the ability of texture to hide 
approximations in geometry depends on the coarseness of the 
original geometry.  Pellachini, Ferwerda and Greenberg [Pell00] 
used similarity ratings combined with multidimensional scaling 
and magnitude estimation to derive a perceptually equidistant 
gloss space. 

An initial perceptual evaluation of the automatic fidelity 
measure designed by Daly was performed by Martens and 
Myszkowski [Mart93].  They found a high correlation between 
the Daly measures and observer ratings of texture masked objects.  
Previously we [Wats00] used naming times as an experimental 
fidelity measure to examine the effects of model simplification.  
After duplicating the natural/manmade effect discussed above and 
confirming that naming times were sensitive to simplification, we 
turned to an evaluation of several automatic fidelity measures.  
We found that at severe simplifications, the automatic measure 
designed by Bolin (BM) [Boli98] was the most reliable, with 
MSE and maximum 3D distance also fairly reliable.  However, at 
more moderate simplifications none of the automatic measures 
reliably modeled naming time. 

5 EXPERIM ENTAL M EASURE STUDY 
Our evaluation of the naming time, rating, and preference 

fidelity measures took the form of an experiment using these 
measures as the dependent outcomes. This experiment had two 
goals: to learn about the relative strengths and weaknesses of 
these measures in their responses to model and image fidelity, and 
to provide an experimental test bed for our evaluation of 
automatic fidelity measures in the following section. 

5.1 M ethods 
Here we outline experimental methodology and detail our 

experimental stimuli.  For full detail, please see the appendix. 

Stimuli were created from 36 3D polygonal models (31 in the 
public domain; 5 from a commercial source). None contained 
color, texture, material, or vertex normal information. Half the 
models represented manmade artifacts and the other half were 
representations of animals. Each of these models was simplified 
using two simplification algorithms (Vclust [Ross93] and Qslim 
[Garl97]) resulting in two levels of simplification each. We chose 
these algorithms because they are widely used and according to 
prevailing opinion, produce models differing widely in visual 
fidelity.  Thus this experiment had three independent variables: 
simplification type (Vclust vs. Qslim), simplification level (three 
levels including unsimplified), and object type (animals vs. 
artifacts).  These were varied within participants. 

Models were simplified in two stages. First, Qslim was used to 
simplify all models to the number of polygons contained in the 
smallest model in the set (3700 ±50). We refer to these as the 
“standards”  (0% simplification), and label a member of this set s. 
Second, the standards were simplified using Qslim and Vclust by 
removing 50% and 80% of the original 3700 polygons. We refer 
to members of the resulting four model sets as q5, q8, v5 and v8. 
There were thus five examples of each of the 36 objects, for a 
total of 180 stimuli. 

Each stimulus image was uniformly scaled to 591 pixels in 
width and displayed in the center of the screen.  The rating and 
preference task stimuli each consisted of two exemplars of a 
single object model that were scaled to 400 pixels in width and 
displayed side-by-side, each centered within a 512(w) x 768(h) 
pixel space.  Figure 1 shows a stimulus simplified at 80% by 
Qslim and Vclust. 

Naming task.  Participants were asked to name each object as 
quickly and accurately as they could. They were told that some 
pictures would be simplified representations and were shown 
printed examples. 

Rating task. All four simplified exemplars of an object were 
rated against the standard ((s, q5), (s, q8), (s, v5) and (s, v8)). 
Each participant rated all 36 objects once at each simplification 
type and level. Stimuli were presented in a random order. 

Participants were told that on each trial their task was to rate the 
likeness of the picture on the right against the standard picture on 
the left, using a 7-point scale. They had four practice trials. 

Preference task. Exemplars of both simplification types were 
compared at the same simplification level (e.g. (q5, v5) or (q8, 

Figure 1: One stimuli from the experimental set.  At the top is the 
original, the middle Qslim 80%, at the bottom Vclust 80%. 



v8)). There were 36 objects, each with two simplification types 
and two simplification levels, for a total of 72 comparisons. The 
left-right position of the Qslim (Vclust) example was distributed 
evenly throughout the trials. Participants had four practice trials.  
Participants were asked to choose which picture in the set was a 
better example of each object.   

5.2 Results 
5.2.1 Naming Times 

Figure 2 shows the mean naming times as a function of object 
type, simplification algorithm, and simplification level.  It can be 
seen that all three factors affected performance: animals were 
named more slowly than artifacts, naming times were longer with 
increasing simplification, and naming times were longer with 
Vclust (see Table 1).  There were no interactions between object 
type and simp level.  Reassuringly, this replicates the main trends 
of our earlier study [Wats00].  In the only interaction, the effect of 
simp type varied with simp level (see Table 2).  Figure 3 shows 
the data averaged over type of model.  Clearly the Vclust 

algorithm was much more devastating to naming times than Qslim 
at the higher levels of simplification. 

We corroborated these observations with analyses of variance 
(ANOVAs) on the naming time means averaged two ways.  For 
details on these analyses please see the appendix. 

5.2.2 Ratings and Preferences 
Rating results are shown in Table 3, averaged two ways.  Figure 

4 shows the average similarity ratings as a function of object type, 
simplification type, and simplification level.  Participants were 
sensitive to simplification level and rated the 50% simplified 
objects closer to the “ ideal” than the 80% simplified objects (5.2 
versus 3.7).  Second, they also clearly thought that the Qslim-
simplified objects were closer to the ideal than were the Vclust-
simplified objects (5.0 versus 3.9).  Third, simplification type 
interacted with simplification level; similar to the naming time 
data, there was less of a difference between the algorithms when 
objects had been simplified to 50% (5.6 versus 4.7 for Qslim and 
Vclust, respectively) than when they had been simplified to 80% 
(4.3 versus 3.1). 

Figure 2: Naming times as a function of simplification type, 
simplification level, and object type. 

Figure 3: Naming times averaged across object type as a function 
of simplification type and level. 

Var iable Avg By ANOVA 
object type participants F(1,35) = 10.24 

simp level participants F(1,35) = 13.59 

simp level objects F(1,33) = 13.80 

Table 1: 2 way analysis on naming times averaged 
over simp type.  All effects p<.05. 

 

Var iable Avg By ANOVA 
simp type participants F(1,35) = 5.29 

simp level participants F(1,35) = 13.59 

simp level objects F(1,33) = 13.80 

stype x slevel participants F(1,35) = 4.70 

Table 2: 3 way analysis on naming times without 
standard models.  All effects p<.05. 

Figure 4: Ratings by simplification type, simplification level, and 
object type. 



In all of these respects, ratings results were similar to naming 
time results.  However, ratings and naming times differed in their 
response to object type.  Ratings did not respond simply to object 
type, and in fact there was an interaction between object type and 
simp type: the animal models were rated closer to the standard 
when they had been simplified using the Qslim algorithm (5.1 
versus 4.9 for animals versus artifacts, respectively), but the 
artifacts were rated as being closer to the standard when they had 
been simplified using Vclust (3.8 versus 4.0 for animals versus 
objects). 

In the preference results, there were main effects for both object 
type and simplification level (see Table 4 and Figure 5).  
Essentially, the preference for Qslim-simplified stimuli was 
greater for the animal models than for the artifact models (90.1% 
versus 77.0%), and it was greater for 80% objects than for the 
50% objects (86.5% versus 80.6%). 

6 AUTOM ATIC M EASURE STUDY 
We now turn our attention to automatic measures of visual 

fidelity, and their ability to predict experimental measures of 
fidelity provided by human observers.  Such automatic measures, 
if effective, could be quite useful in evaluating the effectiveness 
of various algorithms -- and if efficient enough, might even be 
incorporated into the algorithms themselves.  We examine three 
tools for measuring fidelity: an implementation of the image 
comparison algorithm described by Bolin and Meyers [Boli98] 
(BM), mean squared image error (MSE), and the Metro tool from 
Cignoni, Rocchini and Scopigno [Cign98]. 

6.1 M ethods 
Both BM and MSE accept as input an ideal image and an 

approximate image, and return summary measures of the 
difference between these images.  MSE returns a single number as 
its estimate.  BM returns a difference image, with the value at 
each image location estimating the ability of viewers to perceive 
the local difference between the images.  Since we require a 
single value summarizing image fidelity, we use the average of all 
the local values contained in the difference image.  For both MSE 
and BM, the images used were the same images used in 
experimentation. 

Metro accepts as input two similar 3D polygonal models, and as 
a result is not sensitive to viewpoint.  It returns rough estimates of 

the difference in volume between the two models.  It also samples 
the two surfaces at multiple points, and measures the distance 
from each point on the first (pivot) model to the surface of the 
other model.  It returns three summaries of these distance 
measures.  The first is the mean of these distances, obtained by 
normalizing the sum of the distances with the surface area of the 
pivot model.  The second simply squares each of the summed 
distances before normalization.  The third is the maximum of the 
measured distances.  Metro returns its summaries in model 
coordinates, as well as in coordinates normalized by the diagonal 
of the pivot model bounding box and the diameter of the smallest 
sphere that encloses the pivot model. 

Our evaluation of Metro’s fidelity measures includes the 
volume difference (MetroVol), as well as each of the mean 
(MetroMn), mean squared (MetroMSE) and maximum 
(MetroMax) summaries.  All three distance summaries were 
normalized by the diagonal of the pivot model bounding box.  For 
the maximum summary, we used a Metro option that returned the 
Hausdorf distance, that is, that found the maximum of two-sided 
distance measurements both from the first model to the second, 
and the second to the first. 

We found four sets of automatic fidelity measures for each of 
the 36 models in the experimental set.  If, for a given model, s is 
the standard, q5 and q8 are versions of s simplified by Qslim 50% 
and 80% respectively, and v5 and v8 are versions of s simplified 
by vertex clustering 50% and 80% respectively, then we found 
sets of fidelity measures for each of the following four model 
pairs: (s,q5), (s,q8), (s,v5) and (s,v8).  For each of these pairs, the 
set of fidelity measures included BM, MSE, MetroMn, 
MetroMSE, MetroMax and MetroVol.  For Metro, we always 
used s as the pivot.   

To each fidelity measure in each model pair set we compared 
experimental measures.  For naming times, we used the time for 
the non-standard model in the pair (e.g. for (s,q5), we used the 
time it took to name q5, or name(q5)).  For ratings, we used the 
rating of the non-standard model in comparison to the standard 
(e.g. rate(s,q5)). 

Automatic measures compared to experimental preference 
measures took a special form.  Typically persons will compare 

Var iable Avg By ANOVA 
simp type participants F(1,35) = 243.56 

simp type objects F(1,33) = 100.97 

simp level participants F(1,35) = 264.29 

simp level objects F(1,33) = 388.86 

stype x slevel participants F(1,35) = 32.23 

stype x slevel objects F(1,33) = 11.75 

stype x otype participants F(1,35) = 29.51 

Table 3: 3 way statistical analysis on ratings.  All 
effects p<.05. 

 

Var iable Avg By ANOVA 
object type participants F(1,35) = 79.68 

object type objects F(1,33) = 5.25 

simp level objects F(1,35) = 18.20 

Table 4: 2 way analysis on preferences.  All effects 
p<.05. 

Figure 5: Preferences for Qslim by simp level and object 
type. 



two stimuli for quality by judging which of the two is closer to a 
visually presented or completely cognitive ideal.  Therefore the 
automatic measures we compared to experimental preferences 
were constructed from the previous measured pairings, and took 
the form p5 = (meas(s,q5) - meas(s,v5)) and p8 = (meas(s,q8) - 
meas(s,v8)), where meas is one of the six measures we evaluated.  
p5 and p8 predict preference among the 50% and 80% simplified 
models, respectively, with a positive result predicting a preference 
for Vclust, a negative result for Qslim.  We also compared naming 
times and ratings to p5 and p8.  These comparisons used the 
differences in naming times and ratings across simplification type 
(e.g. (name(q5) – name(v5)) and  (rate(s,q5) – rate(s,v5))). 

6.2 Results 
Table 5 shows automatic fidelity measure correlations to 

naming times and ratings used to judge quality with (at least 
implicit) reference to an ideal.  Each correlation measure reflects 
comparisons for both simplification levels within a simplification 
type.  Where correlations are presented in bold, the associated 
automatic measure accounts for a marginally significant (p < 0.1) 
proportion of the variation in the experimental measure.  Where 
they are also italicized, the automatic measure accounts for a 
significant (p < 0.5) proportion of experimental variation. 

All automatic measures with the exception of MetroVol were 
very successful predictors of quality as judged by ratings.  
Correlations were quite high, with ANOVAs indicating that a 
statistically significant portion of experimental variance was 
accounted for.  Note that correlations are consistently negative, 
since low automatically measured error correlates consistently 
with high experimental ratings.  Correlations are slightly worse 
for animals as opposed to artifacts, and for Qslim as opposed to 
Vclust. 

The automatic measures were much less successful at predicting 
quality as judged by naming times.  Correlations were in this case 
generally positive, since low automatically measured error 
correlates to short naming times.  The most successful automatic 
fidelity measures were BM, MSE and MetroMn.  The striking 

failures here are the consistently low correlations for Qslim, and 
to a lesser degree, the lower correlations for animals, echoing the 
same trends in the ratings correlations. 

We performed in-depth analyses of the automatic measures by 
treating their results as dependent variables in ANOVAs much 
like those used for the experimental measures, with simplification 
type, simplification level, and object type as independent 
variables.  We present these results in Table 6.  Table values in 
italics represent F values from analyses averaged across objects 
for each participant, rather than averaged across participant for 
each object.  We graph the means for two of the better measures, 
BM and MetroMn, by objects in Figures 6 and 7, and show for 
comparison naming time and ratings graphs averaged over 
participants for each object.  All measures, whether automatic or 
experimental, were significantly affected by simplification level.  
Most measures were significantly affected by simplification type 
and the interaction of simplification type and level.  The effect of 
object type, however, differed greatly across the measures, 
whether experimental or automatic. 

Table 7 shows automatic fidelity measure correlations to 
preferences and naming time and rating differences used to judge 
which of two stimuli has superior quality.  Each correlation 
measure again reflects comparisons for both simplification levels.  
Where correlations are presented in bold, the automatic measure 
accounts for a marginally significant (p < 0.1) proportion of the 
variation in the experimental measure, where they are also 
italicized, the automatic measure accounts for a significant (p < 
0.5) proportion of experimental variation.  The automatic measure 
differences are negative if Qslim has less error, while rating 
differences and preferences are positive if Qslim is rated more 
highly or preferred, giving negative correlations.  Since naming 
time differences are negative if Qslim produces the more 
recognizable model, correlations to it are largely positive.  In 
general, the automatic measures correlated quite well to 
experimental preferences, less well to differences in ratings, and 
quite poorly to differences in naming times.  Again correlations 
were worse for animals than for artifacts. 

7 DISCUSSION 
In this section we review our experimental and automated 

findings, make some recommendations on the use of fidelity 
measures, and provide some suggestions as to how automatic 
fidelity measures and the applications that use them might be 
improved. 

7.1 L imitations 
However, before we do so, we should note the limitations of our 

studies.  We begin with a consideration of our stimuli.  First, we 
have limited ourselves to the study of one almost optimal view of 
each object.  Second, this study has focused on approximations 
made in model geometry, rather than in the illumination model, 
model texture, or in attributes such as color or per-vertex normal 
vectors.  In addition, we have focused on recognition of objects 
presented in isolation, rather than in more natural scenes 

Fidelity 
Measures 

Simp 
Type 

Simp 
Level 

SType 
x 

SLevel 

SType 
x 

OType 
Three 
Way 

Naming 5.29 13.80 4.70   
Rating 100.97 388.86 11.75 29.51  

BM 11.73 108.08 6.31   
MSE 78.31 100.12 37.55   

MetroMn 56.48 192.71 32.27 8.02 8.18 
MetroMSE 23.58 135.08 14.72 8.67 7.03 
MetroMax  32.86    
MetroVol  6.68 7.82   

Table 6: Significant ANOVAs for naming times, 
ratings and automatic fidelity measures.  Italics 
represent participant analyses. 

Naming Times Ratings 
All Models Animals Ar tifacts All Models Animals Ar tifacts Automatic 

Measure Qslim Vclust Qslim Vclust Qslim Vclust Qslim Vclust Qslim Vclust Qslim Vclust 
BM -0.07 0.30 -0.07 0.21 -0.03 0.41 -0.62 -0.60 -0.43 -0.54 -0.72 -0.67 
MSE 0.07 0.31 0.02 0.14 0.18 0.48 -0.67 -0.71 -0.68 -0.71 -0.74 -0.77 

MetroMn 0.03 0.31 0.00 0.24 0.10 0.38 -0.65 -0.77 -0.77 -0.78 -0.66 -0.77 
MetroMSE -0.04 0.25 -0.20 0.27 0.06 0.22 -0.46 -0.55 -0.21 -0.53 -0.56 -0.60 
MetroMax -0.05 0.27 -0.16 0.26 0.04 0.28 -0.60 -0.73 -0.52 -0.75 -0.66 -0.72 
MetroVol 0.19 0.14 -0.07 0.08 0.41 0.19 -0.21 -0.13 -0.58 -0.34 0.00 -0.04 

Table 5: Correlations of naming times and ratings to automatic fidelity measures. 



containing several objects in their context.  Finally, models are 
often used in interactive applications with viewpoint and model 
motion, while all of the stimuli presented and studied here were 
static.  Removing these limitations in further studies would 
certainly increase the generality of our results.  At the same time, 
such changes would increase variation in those results, and stiffen 
the challenge posed to the various automatic measures of visual 
fidelity, which would have to model a more complex 
experimental response.  For example, the introduction of 
viewpoint and non-geometric experimental factors would 
certainly reduce the effectiveness of the Metro measures, at least 
in their current form. 

In order to limit the scope of our experimentation, we also made 
choices in the use of our automatic measures.  In particular, we 
chose BM as a quickly executing representative of those measures 
that model the early stages of human vision.  But BM is a 
specialization of other slower measures ([Daly93, Lubi93]) that 
might be more effective (though BM was proved very effective in 
these results).  BM and related measures were also developed for 
stimuli more complex (and more challenging) than those used 
here.  Difference image summarizations other than the averaging 
used here might also increase measure effectiveness. 

7.2 Confirmations 
As we have noted above, our naming time results were largely 

in agreement with the results we obtained earlier in [Wats00].  We 
also found that simp level has the effect one would intuitively 
expect on the rating and preference measures.  In agreement with 
prevailing opinion, Qslim was by all measures a more effective 
simplification tool than Vclust.  Many have conjectured that 
simplification techniques show their mettle at low polygon counts.  
These results are in agreement with that hypothesis, with a simp 
level and simp type interaction showing that there is little 
difference between Qslim and Vclust at 50% simplification, a 
large difference at 80%. 

7.3 Surprises 
Ratings and preferences indicated that though Qslim is 

generally a better simplifier than Vclust, it simplifies animals 
most effectively.  This may indicate that a specialization of Qslim 
for more regularly curved (or planar) surfaces is possible.  On the 
other hand, Vclust is more effective when simplifying artifacts – a 
hint that Vclust’s regular sampling approach is most effective 
when used with models typical of CAD/CAM applications, which 
contain many coplanar polygons and regularly curved surfaces. 

Naming times did not respond to object type with the same 
complexity as ratings and preferences, instead, they were 
uniformly longer for animals.  This is most likely a clue to the 
different natures of these experimental measures: while naming 
times probe subconscious perception from the low through the 
higher cognitive levels, ratings and preferences seem to sample 
very low level processes, avoiding the natural/manmade effect.  
(However, ratings and preferences are notoriously vulnerable to 
higher level, conscious cognitive qualities assigned to the axis of 
comparison). 

In line with these differences in the experimental results, the 
automatic measures were poor predictors of naming times, but 
excellent predictors of experimental ratings, preferences, and to a 
lesser extent, differences in ratings.  BM, MSE, and MetroMn 
were particular success stories in this respect.  Obviously the 
differing experimental responses to object type played a role in 
these correlative trends. 

However, correlations were low even within simplification and 
object type, where only simplification level was varying.  We see 
two possible reasons for this.  First and most simply, naming 
times are very variable, much more so than ratings and 
preferences.  Obtaining good correlations to them within 
simplification and object type may require the use in experiments 
of larger model stimuli libraries and more participants.  Second 
and more provocative, although it is certain that in general, 
increasing simplification increases naming times; we noticed that 

Figure7: BM response to simplification type, simplification 
level, and object type, vs. naming time by object. 

Figure 6: MetroMn response to simplification type, 
simplification level, and object type, vs. ratings by object. 

Table 7: Correlations of preferences, naming time differences, and rating differences to 
automatic fidelity measures. 

Naming Diffs Rating Diffs Preferences Automatic 
Measure All Anims Ar tifs All Anims Ar tifs All Anims Ar tifs 

BM 0.21 0.23 0.23 -0.36 -0.23 -0.38 -0.37 -0.27 -0.35 
MSE 0.26 0.15 0.37 -0.44 -0.25 -0.54 -0.33 -0.42 -0.27 

MetroMn 0.18 0.20 0.21 -0.42 -0.21 -0.47 -0.42 -0.41 -0.32 
MetroMSE 0.04 0.17 -0.03 -0.21 -0.25 -0.15 -0.27 -0.42 -0.16 
MetroMax 0.13 0.19 0.14 -0.41 -0.16 -0.45 -0.43 -0.40 -0.34 
MetroVol -0.06 0.17 -0.17 -0.05 0.19 -0.15 -0.04 0.16 -0.11 

 



for several models, increasing simplification reduced naming 
times.  We will call this the distillation effect.  There are 
precedents for this in the psychology literature [Ryan56, Edel99].  
The basic notion is that by removing detail that allows fine 
grained identification of an object, the speed of coarse grained, 
categorizing identification is improved.  The distillation effect 
seems to occur particularly often for animal models simplified 
with Qslim, and may explain some of the negative correlations 
(again, within simplification and object type) in Table 5.  
Automatic measures do not model this effect, reducing 
correlations. 

7.4 Implications 
For simplification.  Our results indicate that simplification 

effectiveness varies by all experimental measures as a function of 
object type.  This suggests the possibility of simplification 
algorithms that specialize in, or adapt to, different types of 
models.  As simplification researchers continue their work, they 
should pay particular attention to the quality of their models at 
low polygon counts.  Our results also suggest that mean distance 
is a more important heuristic for simplification than maximum 
distance.  The rating and preference measures are well modeled 
by the automatic measures reviewed here, which should prove 
useful when comparing algorithms, or even during the process of 
simplification itself. 

For use of experimental measures.  All of the measures vary in 
the degree of explicit visual comparison they require of the 
viewer.  With preferences, this comparison is very explicit.  With 
ratings, the comparison is to some (at least cognitively imagined) 
visual ideal.  Comparison may be involved in the process probed 
by naming times, but it is certainly not an explicit comparison 
between two visual images.  It may be telling that this least 
comparative of experimental measures was also most poorly 
modeled by the automatic measures. 

What is fidelity?  Is it visual similarity to the original?  Or is it 
successful communication of the original concept?  The notion of 
fidelity most relevant in the current application should indicate the 
experimental measure that is most appropriate.  During the 
processes of simplification, image compression and generation, 
the goal is typically one of appearance preservation in the face of 
each of a long series of minor alterations.  Preferences, ratings, 
and their correlating automatic measures are probably the most 
appropriate indices for these applications.  However, when 
making cross algorithm comparisons, the compared images or 
models are the result of very different, very long series of these 
alterations, and the appropriate notion of fidelity is less clear. 

It is intriguing to note that in almost all computer graphics 
applications, users never make an explicit visual comparison.  At 
most, they compare a currently displayed example with a 
previously displayed one.  In highly interactive applications, this 
comparison, if it indeed occurs, is certainly cursory at best.  In 
these sorts of settings, the naming time measure might be most 
appropriate, and the distillation effect, if it indeed exists, most 
effectively exploited.  It is also intriguing to imagine a non-
photorealistic pursuit of the distillation effect in its extreme. 

For automatic measures.  Many of these measures can be used 
for purely numerical ends, ensuring for example that a given 
approximation does not deviate from the original by more than 
some constant error.  We do not consider such applications here. 

Our results indicate that MetroVol is a poor predictor of visual 
fidelity and quality as indexed by any of our experimental 
measures, at least at the levels of geometric simplification (3700 
polygons and below) examined here.  BM, MSE, and MetroMn 
were excellent predictors of fidelity as measured by ratings and to 
a lesser extent preferences and rating differences.  Unfortunately, 
we found no fully reliable predictors of the conceptual sort of 

fidelity measured by naming times.  For now, the best automatic 
predictor of naming times and their differences is MSE, with BM 
and MetroMn coming very close behind.  Given the poor 
correlations of all three of these measures with Qslim, these 
naming time predictors must be used with extreme skepticism, if 
at all. 

For future work.  These results raise many intriguing questions.  
First, do they generalize?  We are currently investigating how 
well these results hold across differ viewpoints, and would like to 
examine the effects of both background and interactive motion.  
The element of comparison embodied both by these measures and 
typical graphics applications clearly needs further research, as 
does the hypothesized distillation effect.  Obviously our automatic 
measures must improve their ability to model naming times.  This 
will require understanding and modeling object type effects.  In 
the long run, research into the object type and distillation effects 
may lead to new simplification algorithms. 

8 CONCLUSION 
This paper described our research into the experimental and 

automatic measurement of visual fidelity.  Measuring visual 
fidelity is fast becoming crucial in the fields of model 
simplification, level of detail control, image generation, and 
image compression.  In our study, we manipulated fidelity by 
applying two different model simplification algorithms to 36 
polygonal models, divided into models of animals and manmade 
artifacts, producing approximating models at two different 
polygon counts.  We examined the visual fidelity of these models 
with three different experimental measures: naming times, ratings, 
and preferences.  All the measures were sensitive to the type of 
simplification algorithm used and the amount of simplification, 
however they responded differently to model type.  We then 
analyzed model visual fidelity with several automatic measures of 
visual fidelity.  These automatic measures proved to be good 
predictors of ratings and preferences, but only mediocre predictors 
of naming times. 
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10 APPENDIX: EXPERIM ENTAL DETAILS 
Experimental methodology.  Participants performed the naming, rating, 

and forced-choice preference tasks on the same set of items during a 
single session. All participants completed the naming task first because 
seeing a stimulus once reduces its subsequent naming time [Joli85]. 
Similarly, all  participants performed the rating task prior to the preference 
task because it was possible that performing the preference task first could 
contaminate rating judgments by increasing the subjective distance 
between the less preferred object and the standard. 

The virtual field of view used in forming stimuli was always 40 degrees 
and the virtual eye point was always at a distance that was twice the length 
of the bounding box.  Views were generally directed towards the mean of 
a model’ s vertices, but 14 models required centering corrections because 
vertex distributions were not uniform.  Each model was interactively 
rotated so that it was displayed in a canonical 3/4 view that revealed a 
reasonable level of detail across the models [Palm81].  Each model was 
illuminated with one white (RGB=[1,1,1]) light located at the eye point. 
All models were assigned the same white color and flat shaded, and 
displayed on a black background. 

The images were displayed on a 17-inch Microscan CRT, with 
participants sitting approximately 0.7 m from the display. Participants 
performed the naming task by speaking into a hand-held microphone. 
Responses for the rating and preference tasks were entered on the 



computer keyboard.  Thirty-six undergraduate volunteers from the 
University of Alberta pool participated in the experiment. 

For the naming task, stimuli were organized into six groups of six 
stimuli each.  There were three groups for each simplification algorithm, 
and within algorithms, one group for each level of simplification (0%, 
50%, and 80%).  Each group contained three animal models and three 
artifact models.  Stimuli were cycled through the groups such that across 
participants, each stimulus appeared once in each of the six experimental 
conditions (2 simp type x 3 simp level).   

Each participant saw all 36 models only once; 12 were standards, 12 
were simplified using Qslim, and 12 were simplified using Vclust; 6 of 
each of the simplified models were seen at 50% simplification and 6 were 
seen at 80% simplification.  There were eight practice trials.  On each 
trial, the experimenter pressed the space bar, a fixation cross appeared for 
750 ms, the picture appeared on the screen, the participant named the 
picture, and the picture disappeared as soon as a name was said. Naming 
times were recorded from stimulus onset to the participant’ s response. 

For the rating task, on each trial the participant pressed the space bar, 
and after a delay of 250 ms the standard and comparison pictures appeared 
on the screen and disappeared as soon as a rating was entered. 

For the preference task, subjects pressed the “ A”  and “ K”  keys to 
choose the left and right stimuli, respectively.  The participant pressed the 
space bar; after a delay of 250 ms the pictures appeared and then 
disappeared as soon as a preference was entered. 

The models: ant, bear, bicycle, blender, bunny, camera, car, chair, cow, 
dinosaur, dog, dolphin, dump truck, elephant, fighter jet, fish, helicopter, 
horse, kangaroo, lion, microscope, motorcycle, piano, pig, plane, raven, 
rhino, sandal, shark, ship, skateboard, snail, sofa, spider,  tank, tomgun. 

Analysis of experimental measure results.  Three kinds of trials were 
excluded from naming time analyses.  First, we excluded naming times 
measured during spoiled trials (e.g., trials in which participants failed to 
trigger the microphone with their first vocalization – 4.6% of all trials).  
Second, we excluded naming times from trials in which a participant’ s 
response was an error (e.g., calling a picture of a sandal a “ rocket”  – 0.3% 
of all trials).  Finally, we computed the overall mean of the remaining 
naming times and excluded trials that were more than 3 standard 
deviations longer than this average.  These outliers comprised only 1.5% 
of the remaining trials.  

For naming times and ratings, examining the relationship of object type 
to simp level required averaging over simp type for a two way analysis, 
because unsimplified objects were necessarily the same for both the Qslim 
and Vclust.  Additional three way analyses were performed by excluding 
the unsimplified objects.   

Most analyses used two ANOVAs, one averaged over objects (the 
participant analysis) and one averaged over participants (the object 
analysis).  For the participant ANOVA on the preference data, we counted 
the frequency of times that each participant chose the Qslim-simplified 
model in each of the four object type and simplification level conditions, 
and converted the results to percentages.  For the item analysis, we 
counted the frequency of participants who chose the Qslim model for each 
of the objects in each of the conditions. 
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